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Estimation techniques are given for the tbree-parameter Veibull

distribution, with the location (or origin) parameter unknown, and possibly

also the shape and/or scale parameters unknown. Tests of fit are described,

and tables are given for the ODF statistics Al, V2 and ii2. to make the tests.

Several exaples are discussed,
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I. WfMODUCTIOU

In this article are given estimation procedures and tests of fit (based

on the empirical distribution function, or EDF), for the three-parnmter

Veibull distribution:

F(x;ep8,m) - 1 - zp[- ( (x-e)/P8)], x > a (1)

where $ and a are positive constants. When a is known, the

distribution is called the two-parameter Weibull distribution, and estimation

procedures a........ tee*4.. are then very straightforward: the tests
k- iz- s--4

are referenc in ,'9ectie.-, Wl 4 re we concentrate on tests for use when
dA'! )TQ

* is not o, but must . from the sample, together with u and

8 if necessýiy- -An cheeie, problems can sometimes arise in

estimating cbe parmetsrs, --so 4A 4tcion 2, procedures are given to obtain

efficient egtLmatew which can hu Soe used with the goodness-of-fit tests.

For reasons of space msny diitiLU.,of both estimation and goodness-of-fit

procedures Nave been omitted; asoma f these are in Lockhart and Stephens

(1989). ,

It is worthwhile to observe that the three-parameter WeLbull

distribution is a member of a wider class, the generalized Extreme-Value (or

Jenkinson) distribution. This distribution is

F*(x;abc) - 1 . exp 1 + c(+J- j. x > a (2)

The parmeter b must be positive while a and c may be any real numbers.

The three-parameter Weibull distribution is the subfamily of F* with

c > 0. The special case c-0 is the usual extreme-value distribution

Fe(x;a,b,0) - 1 - exp[- exp((x-a)/b)] , - <K < ; (3)
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it arises as the limit of the three-parameter Weibull family (1) as m a.

IstImatios of parmaeters. The goodness-of-fit procedures depend on first

estimating the parameters in (1) by an efficient method, for example, by

maximum likelihood. If one had an infinitely largo Weibull sample, such

estimates could be found straightforwardly. However, for finite samples,

usually small, there will be some data sets which give no local maxinm for

the likelihood. If one were willing to fit the larger family (2), mazism

likelihood estimates could be found, but with a zMaan c; thus the

resulting fitted distribution will not be in the Veibull family. However,

practical workers in many fields do not wish to broaden the class of

distributions beyond the Weibull, to include (2); then, for practical

purposes, the best Veibull fit will be the distribution with c-0 (the

nearest non-negative c), that is to say, the extreme-value distribution (3).

Note that c-0 corresponds to i-t in (1) (and a e-.a and -4 .).

In Section 2 we discuss estimation, and bow to recognize this

difficult case. A formula is given to calculate, from a given data set, a

quantity A, which, when negative, indicates that no local axinsm for the

likelihood can be found, and distribution (3) should be fitted to the data.

Cheng and Iles (1990) have discussed estimation problems for three-

parameter distributions embedded in a larger model and in particular, problems

for the three-parameter Weibull distribution, and have pointed out the connec-

tions between (1) and (2). They offer tests for c-0, with the assumption that,

if this can be accepted, the extreme-value distribution (3) will be fitted to

a data set; if a zero c is rejected, estimation continues for the Weibull

distribution. The implication is that, where acceptable, the distribution (3)

will be fitted in preference to (1). We are concerned with providing tests of

fit for the distribution (1), but estimation of parameters must come first; we

concentrate therefore on fitting the Weibull distribution whenever this is
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possible, and only fall back on (3) where ye must assume -an. There are

naturally many points of contact with Cheng and Iles (1990), as we shall

see below, although these authors do not discuss tests of fit.

Apart from the problem of deciding whother i is infinite, it is

vell-known that there are other problems of estimation when a is not

known; for example, the likelihood can be made infinite if a also is

unknown, or if known a < 1. An extensive literature exists on this type of

problem (for example Smith, 1985; Chong and Iles 1987). Smith (1985)

discusses asymptotic procedures in detail, and gives extensive theory, to

which we refer below; Smith and Naylor (1987) compare Bayesian and maximum

likelihood estimators in a case study. Of the results which are known and

proved, most of them concern asymptotics, where the sample size is infinite,

or they concern the estimation situation for a large. In this article we

concentrate on the practical cases of finite samples, and maller values of a.

Goodness-of-fit tests. Suppose a random sample z.l,z 2 ,...,zn is given.

The goodnoss-of-fit tests are based on the empirical distribution

function (EDT) of the zx, and in practice the statistics are calculated from

the values z, given by the probability integral transform s, - F(xl: a,P,m)

where estimates of a, P and a are used in F(.) when the parmeters are

not known. EDF tests have been shown to be powerful in many test situations;

rival procedures, such as correlation tests or spacings tests, often have

zero asmtotic efficiency relative to ODF tests (see, for example, Cibisov

(1961) for ARE of spacings tests, and McLaren and Lockhart (1987) for ARE of

correlation tests).

The estimation techniques depend on the profile likelihood of the

data. They are set out in Section 2. The tests of fit are described in

Section 3, and the theory is given in Section 4. Throughout the paper, the

plots of the profile likelihood, the estimation procedures and the tests of



fit will be illustrated by reference to throe data sets, given in Appendix 1.

The three sets are as follows:

(a) Data sot 1, from Cox and Oakes (1984, Table 1.3) consists of 10 values of

the =n6ober of cycles to failure when springs are subjected to various stress

levels. For these data, the stress level is 950 N/m 2 , and the values are in

uaits of 1000 cycles.

(b) Data set 2 consists of 15 times to failure of air conditioning equipment

in aircraft: these are taken from a table of times for several aircraft,

given in Proschan (1963, Table 1). and are the data for aircraft nmber 7910.

This set has been used by Stephens (1986b) in studying various tests for

exponentialLty, and the conclusion was drawn that the times coae from a

distribution with decreasing failure rate (DIR); if this distribution is

WeLbull, DIn implies a < 1. Clearly both data sets 1 and 2 have been

rounded, so they become discrete. but this makes negligible difference to the

estimation procedures or the tests of fit.

(c) Data sot 3 is artificially constructed, to illustrate the third possible

situation which can occur (although more rarely) in analysing a sample.

2In order to save space, we give tables only for the EDF statistic A , which

is known in many situations to have good power. Tables for the statistics

W2 and U2 are given by Lockhart and Stephens (1989).

Finally we remark that tables for testing fit to the larger family (2)

above will be published separately.

2. ESTINhTION PROCEDURES

2.1 The different Cases. For the test of i 0e, eight cases can be

distinguished, according to which parameters in (1) Wust be estimated; the

other parameters are assumed known. The cases are:

Case 0: all parameters known; Case 1: a unknown; Case 2: 0 unknown;



Cose 3: a and P unknown; Case 4: a unknown; Case 5: a and unknmmn;

Coe 6: P and m unknown; Case 7: a, P and a all unknown.

Cs emhers 0,1,2 and 3 correspond to the numbers used for other

"diatributiions involving only location and scale parameters; see, for

example, Stephens (1986a). In Case 0, the zs given by the probability

Integral transform are, on Ho. uniform between 0 and 1; EDF tests for this

Case are given in Stephens (1986a, Section 4.4). In Cases 2, 4, and 6 above,

wbere a is known, the transformation y - - log(x-a) is made and the

y-sample is tested to come from the extreme-valuo distribution

F(y) - exp[-exp(-(y-a')/P'),, - a < Y < a (4)

(Throughout the paper, log refers to natural logarithm). ODF tests are given

in Stephens (1977, or 1986a, Section 4.11). Here the relationship between (1)

and (4) is that a' - - lo& and 1/ - 1/,.

Thus in this article it is necessary to give tests only for Cases 1, 3,

5 and 7, where a must be estimated, and possibly also 0 and a. As was

stated in Section 1, this is usually done by maizmum likelihood, and we first

examine the likelihood equations.

Suppose L(a,P,m) is the likelihood for a sample Xl,... ,xn from (1).

The log-likelihood function is then

A - log L(a,P,u) - n log m + (:-l) Elog(xl-a)

- =l log - Z((xl-a)/p) (5)

where sums are for I from 1 to n. From (5) the likelihood equations are

e- n/A + Z log(,x'-) - (Z(x -a)a log(x-a)/ -

(log P)(n - Z(x -a)"/#) - 0 (6)

ex- (0-1) -a t (a-)) X1 -/00.0 (7)



These will be used to give estimates whenever a, a, and/or $ are unknown.

Equation (8) may be used to eliminate P from (6) or (7), giving

* Z(z 1 -a)nlog(zx1 -) + log(z.1 a) -o
Z( + 0 (9)

-1(x-a) + -0; (10)a 1 E(xl-a),

also (8) can be written

Fs E... . (u

to give the estimate of 0 from the estimated a nd the known or estimated

value of a.

The problems of estimation arise because, when a or ;n is

less than 1, the likelihood can be made infinite by setting a - x(1), where

x( 1 ) < x(2) ... < Z(n) are the order statistics of the sample. This is

clearly a biased estimate of a, and we propose a better estimate below.

2.2 Cases 1 and 3: m known.

Suppose the known value of a is no; we must discuss the two cases (a)

no > 1 Mb 0O<no < 1. (Note that when no - 1, the distribution (1)

reduces to the exponential distribution with unknown origin; tests for this

distribution have been given by Spinelli and Stephens, 1986).

(a) Suppose so > 1. Then in Case 1, with p known, equation (7) is

solved for ;. In Case 3, (9) is solved for ; and then (11) for P, using

a. It is easy with computers to solve for these estimates: a

straightforward procedure is to start with an estimated at - x ( 1 ) where

c is very small, and to decrease at steadily until a solution is found.



(b) Suppose 0 <no< 1. The M.L. estimate of a is now -z ( 1 ); it

in a biased estimate and gives an infinite likelihood. We propose the

following alternative estimates. Let k- l/40. In Case 1. take
X(1 ) - Pk.

For Case 3, proceed iteratively as follows: Suppose P(a,m) in the

solution of (11), and start with a0 - z( 1 ) and PO - P(aO'3O)" Then take

*l (1) " P/n*' Pk4n -" P(ar'0 )' for z-,l..unt o'

converge to estimates ; and .May studies indicate that this procedure,

which we call procedure A, converges rapidly to estimates which usually give

a better fit than the usual a - x(1), and in Case 3, P - (;;30). Procedure

A is illustrated by Example 2 below.

Ezample 1. Case 1. Consider data set 1, In Table 1. To Illustrate Case 1,

suppose values p - 70 and m - 2.1 are assumed known. (These are

reasonably consistent with the values aSA•tML In Case 7 below). The K.L.S.

of ; is 105.31, from equation (7).

Example 2, Case 3. Consider data set 2 in Table 1, and suppose

a - 0.5, say. Then usual estimates are x - Z( 1 ) - 12.0. and • - 69.42,

from (11). Procedure A converges rapidly to give a - 11.69 and P - 70.45.

2.3 Cases 5 and 7.

In these cases, a and a are both unknown. Again the likelihood can

be made infinite, by allowing a - x(1), and using any estimate a such that

S< 1. Thus I cannot be made precise. We shall suggest estimates based on

the 2oile liklo, L*(at), abbreviated L*. This is the likelihood L

maximised with respect to 0 and a, for a fixed at. Thus

L*(at) - L(Mapt.ur) where, for a given at, for Case 5, p€ is the known

P, and then a is the solution of (6); for Case 7, a and Pr are the

solutions of (9) and (11). Case 5 (where only P is known) occurs very
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rarely in practice, and from here on we shall discuss estimation only for the

important Case 7, where all three parameters are unknown.

Case_.. We consider the possible forms which a plot of Z(a) - log L*()

against ac, might take. Suppose Z(ar) is abbreviated to Z. There appear

to be only throe possible types of plot, illustrated by Figures la, lb and

lc. These are the plots for data sets 1, 2, and 3 respectively.

Figure la It may be seen that only Figure la has a local maximum, and only

with this plot is there a true ML solution, occurring for the value of a

equal to the at at the maximum; then u can be found from (9) or (10), and

A from (11) using a and i. The minimum for Z which occurs in Figure la

gives a saddlepoLnt for the likelihood. Figure la is most likely to arise

when the true a > 1; if the sample were infinite, it would certainly be the

plot arising when a > 1. Rockette, Antle and KlLmko (1974) have conjectured

that Figure la occurs with probability converging to 1 as n - a when a > 1.

They noted that the existence of a local maximum implies the existence of a

saddlepoint. Smith (1985) shows Inte: all& that when a > 1, there is, with

probability approaching 1 as n - e, a root of the likelihood equations

which is a consistent local maximum of the likelihood.

Figure lb In Figure lb, Z steadily decreases as a decreases; this figure

occurs for finite samples with increasing probability as m becomes smaller;

for an infinite sample we believe that it would be certain to occur whenever

m < 1. The maximum likelihood estimate of a would then be x( 1 ), giving an

infinite likelihood for a < 1. This estimate is clearly, biased, and we

recomend the estimate ; given by Procedure lb in Section 2.6 below; this

gives efficient estimates, with a loss biased estimate of a.

Figure lc Here there is a minimum for Z (again this gives a saddlepoint

for the likelihood), but there is no maximum and therefore no ML

solution. This figure would effectively never occur if the sample were
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Infinite, (see Smith, 1985) but with finite samples it arises with increasing

probability as a Increases (see Table 4 below). The graph of Z tends to a

horizontal asymptote as a -* - -, suggesting that the HLE of at r -e; in

turn i and j both approach a. The Weibull distribution then takes the

limiting form discussed in the introduction, namely the extrems-value

distribution (3); the relationship between the parameters in (3) and those in

(1) is that b -lim 191 and a - lLu(*+#), am a 4 -, fi * , and a 4 .

Clearly If it could be decided L=&dLately from a data set that Figure lc

would arise, there would be no need to try to find the MLI for (1), and (3)

could be fitted directly. In Section 2.5 we show how this may be done by

calculating a quantity A whose sign isediately detects Figure lc, but

first we discuss the M.L. equations (9) and (10).

2.4 Solution of the Nauinum likelihood equations (Case 7).

axtima and minims in Figures la, lb and lc correspond to solutions of (9)

and (10) for a and i, and then (11) for A. Let a be a trial value for

a, and let =9 be the solution of (9) and ml0 the solution of (10); these

may be found iteratively. If a plot of m9 asainst at intersects a plot

of al0 against a., we have the solution(s) required. Plots of 9 and 10

against ar are shown In Figures 2a, 2b and 2c; they are the plots for data

sets 1, 2 and 3 respectively. There are three possibilities; no

intersection, so no MLE, as in Figure 2b; one intersection, also no XLE, so

fit the extreme-value distribution, as in Figure 2c; or two intersections,

with HLI corresponding to the solution with smaller a, as in Figure 2a.

2.5 Detection of Figures lc and 2c We first give a procedure to decide if

Figures lc and 2c are appropriate for a given data set, without

actually plotting them. In Figures 2a, 2b, 2c it appears that the solutions

for =9 and m10 tend to parallel lines as at . -. ; this is shown to be



true in Appendix 2.

Suppose A is the limiting "gap" between these lines, that is,

A - lin (mlo-mg); the value of A is found as follows. Let i - Zz 'I/n. and
Ot''

s - /n; also define Tr - E(xi) exp(-rxi); in these expressions the

sums run for L-1,...n. Let -1 be the solution of

1 - T (12)

0

The value of 7y can easily be found by iteration, starting, for example, with

y - 1 in the right-hand side terms T and T1." Define

D - iT 0 + 7(T 2 -i T1 ) ; (13)

7 is the limiting slope of the lines, and A is given by

A- (i To0 - (sT 0 - T 2 )/2)/D (14)

It is clear that a negative value of A implies Figure 2c, and then the

Weibull fit should be abandoned In favour of the extreme-value fit (3) - note

that the x-values are fitted directly, and logarithms are not taken first, as

in the test with known a In Section 2. The detection of Figures 1c and 2c

by A is equivalent to use of a discriminant L, proposed by Cheng and Iles

(1990) although they do not discuss the behaviour of equations (9) and (10)

in the same detail.

Ezample 3, Case 7. Data set 3 has been constructed to illustrate Figure lc.

When the extreme-value distribution (3) is fitted (see, for example,

Stephens, 1977, or 1986a, Section 4.10), the parameter estimates are

a - 1.335, and £ - 0.343. In Section 3, we describe the test of fit for

this distribution. It will not be the a&am as that described in Stephens

(1977; 1986a, Section 4.10) because it must be made conditionally on the

occurrence of Figure lc.

o)



2.6. Figures lb and 2b. Suppose A is positive, so that either Figure la

(2a) or lb(2b) is appropriate, and suppose a plot gives Figure lb. The

conventional estimate will be x - Z( 1 ), with an Infinite likelihood, but

again we propose Procedure A, adapted for unknown a, to give a less biased

estimate of a, and also, almost always, a better overall fit.

Suppose ar' ,p m~ are estimates (we omlt the A symbol) at iteration

r: find estimates arl' Pam3  l a follows:

(a) Let +i"- x ( 1 ) - Pr/nk' where k -l/

(b) Then solve (6) for +1*' using a - @+11;

(c) Use (11) to give r+ , using ar+1 and "r+l"

Iteration of steps (a) to (c) continues until the accuracy required for

* is obtained. Initial estimates no and p0 may be found by setting

a0 X(- ) and continuing with steps (b) and (c) above, but using only the

n-1 values x( 2 ), Z( 3 ),...Xcn). The final estimates will be the estimates

;, and a for Figure lb.

Example 4, Case 7 Figure lb is the plot for data set 2; the initial

estimates %, 0o, as are then 12.0, 101.01 and ;n- 0.795; with Procedure A,

7 iterations give final estimates ý - 9.313, 0 - 93.50, ;n - 0.763. Here

Iteration was stopped when two successive values of ;m differed by less than

0.001. We shall see in Section 3 that the second set of estimates gives a

better fit to distribution (1).

2.7 Figures la and 2a: Eamnple 5, Case 7: Finally we turn to solutions based

on Figures la and 2a. These can almost always be found very straightforwardly

by solving (9) and (10) by iteration and searching for the crossing in

Figure 2a with smaller a . For data set 1, the maximum in Figure la, and the

crossing in Figure 2a, occur at a - 99.02, with j; - 2.38 and p - 78.23.

(The saddlepoint is at -r M 116.960, u - 1.008).

2.8 Comment. When Figure lb occurs, we have found, from many Monte Carlo
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studies, that Procedure A Ailax converges, and gives a bettor fit to (1);

then i is small. For larger values of the true a, Procedure A also

converges for soe data sets. but there is also an ISLI because the plot is

like Figure Ia. In this case, the HIS should be taken.

If on is seated before a graphics terminal, it is not difficult to

plot the profile likelihood and decide between the various Figures: also to

plot N, and ni0 and find the estimates. It is inch more difficult to

automate the procedure for a computer. The value of A in Section 2.5 will

decide whether or not Figures Ic and 2c obtain: the problem is to decide

between Figures la (or 2a) and lb (or 2b). We suggest that at be started so

close to Z( 1 ) that si0 - m i is almost 1.00 (for the examples given, this

may man z(1) - at of the order of 10'10). Then make at smaller so that

110 - 19 also gets smaller, and either passes through zero ( so that a

saddlepoint exists and we have figures Ia and 2a), oX is clearly seen to

approach its limit A Njjggt passing through zero (and we have Figures lb

and 2b). In the former case, once the saddlepoint has been found, the steps

in decreasing at can be made larger till the MU is found when ISO - U9 is

zero for the second time.

3. GOODUMSU-0l-FIT TESTS.

In this section the EDF tests are described. The null hypothesis is

No: the random sample z1 , x 2 ,..., % comes from distribution (1).

(a) Find the estimates of unknown parameters as described above, and make the

transformation, for I - 1,2,...,n, Z(1) -F(x( 1 ); a,O,M), using the estimates

where necessary.

(b) Calculate statistics A2 , V2 .U2 as follows:
A2
A M - n - (1/n)E(21-1)[log(z( 1 )) + log(l - z

W2- . (z) - (21-1)/(2n)) 2 + 1/(12n).
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U2 - V2 - n(i - 0.5)2, where

S-F Z(L)/n, and where suws are for I - 1 to n, and log means natural

logarithms.

(Me shall illustrate using only A2  in the Examples below).

(c) Let c - 1/4, or 1/n when m is estimated. Enter Table 1, using the

subtable for the appropriate case. Woen u or I > 2, we have 0 < a < 0.5

and the subtable is entered on the line corresponding to c; when

a or o is less than or equal to 2. so that c 2 0.5, the 1ast line of the

subtable, labelled c - 0.5, should be entered. No is rejected at

significance level p if the statistic used is greater than the value given

for level p. The table has been given using c rather than a because

linear interpolation for c will give good accuracy. In all the tables, the

given points are for the asymptotic distributions of the statistics: however,

they can be used with good accuracy for smaller values of n (say n k 10);

for n < 10 a goodness-of-fit test would in any case have very little power.

Example 1 Case 1 (contliued) For data set 1, with m assumed to be 2.1, (so

c - 1/a - 0.476), p- 70, and - 105.31, the value of A2 is 0.307.

Reference to Table 1 for Case 1, with entry at c - 0.476, shows no

significance at the 50% level, so the eisbull fit is good.

Zzample 2. Case 3 (continued) For data set 2, with a - 0.5, - 11.69 and

S- 70.4 as in Example 2, we have A2 - .754. Since c - 1/m- 2.0, greater

than 0.5, the table for Case 3 is entered on the last line (c - 0.5); A2 is

not significant at the 200 level, so the fit is good.

Ezamplo 3. Case 7 For data set 3, the extreme-value distribution (3) mast

be fitted and estimates are - 1.335 and 6 - 0.343. After the Probability

Integral Transform Z(i) - F(Z(1)), where F(z) is given by (3), the value

of A2  is 0.561. This value should then be referred to Table 1, Case 7,

with c - 0, corresponding to a - a. The p-value is approximately 0.08.



amet. This test should not be confiused with the usual test for the

extreme-value distribution with unknown parameters, given by Stephens (1977;

1986a, Section 4.10). The test given In the previous section Is made

£~J~ia11.~an the occurrence of Figure lc for the profile likelihood plot.

and Table 3 given here, with a - 0, is then the relevant table. The tests

given by Stephens are those for the situation where it is Intended from the

start to fit an extreme-value distribution to the data set.

Rxemple 4 Case 7 (contimaed) for data set 2.* assuming all three parameters

estimated in the conventional way, giving ; - 12.00, j - 101.01, u - 0.795,

we have A2 - 0.703. Mlen Procedure A is used, the estimates, given in

Section 2.10, are "now ;- 9.313, j - 93.50, i - 0.763. and the test statistic

is A2 - 0.54, Indicating a better fit. Since i - 1/;o - 1.31 is greater than

0.5. the Table for Case 7 is entered on the last line (a - 0.5). The

significance level is then 0.17.

lzsuplo Case 7 (continued) For data set 1, with all three parameters

estimated as in Example 3 above, namely ; - 99.02, .b - 78.23, and ;n - 2.38,

A2 - 0.260. Table 1 is entered at a- l/;o . 0.420. The above

test value is not significant at the 50% level, so the fit is very good.

4. ASTIEPTOTIC TEZOT Of MY? TEST.

4.1 AsyM totic distributions

In this section the asymiptotic theory of EDF tests is suaarized. The

calculation of asymiptotic distributions of ED? statistics follows a

well-known procedure (see, for example, Durbin, 1973; Stephens, 1976). It is

based on the fact that yr(z) - r(Fn(s)- z.J where Fn(z) in thelOF of

the z-set, tends to a Gaussian process y(z) as n 4 , and the statistics

are functionals of this process. The mean of y(z) is zero: we need the

covariance function p(a,C) - Sty(&) y(t)). When all parameters are known

i6



(Case 0), this covariance is p0 (st) - min(s,t) - at. Mben paramters are

estimated, the covariance will depend on those which are estimated; if the

method of estimation is efficient the covariance will not depend on true

values of location or scale parameters a and 0, but will depend on the

shape parameter m. Ve illustrate the calculation for Case 7. th mat

difficult case.

auppose the parameters are couponents of a vector 0: 01 - , 02

93 - a, and (Case 7) suppose all three are unknown. Let F(z;#) now denote

the distribution F(x;ae,p ) and let f(z;#) be the corresponding density.

Suppose a vector g(s), vith components S(s) is constructed an follows:

s- F(z; ) 1-1,2,3 , (15)•(# so aI '

where the right hand side is written as a function of & using the

transformation s - F(z;0). Let (S(s))I denote the transpose of $(C).

Let D be the (symmetric) matrix with entries

611 -2(8 2 log~f(zx; )/si IOf9j), 1,J - 1,2,3, where I denotes expectation, and

lot E be the inverse of D. Then, for Case 7,

p 7 (s,t) - po(a,t) - (g(a)),Z $(s) • (16)

From (23) above, the components of g(s) becme, after som algebra, and

using F for F(z;9):

51(s) - U- S -. . (.

92( ' -Mlo-(1-) (17)

r- (l-S) (log(l-s)) log(-log(l-&))

Also, for Case 7. and for a > 2, D has the top right terms:

17



1') : : fr 'r(÷ 1

S(15)

•r- a) + 2r- (t)

Mhen Z is calculated and S(s) and Z are inserted into (16) p 7 (s,8)

1ill be independent of a and P. Mhen a S 2, the U.L. estimate ý of a

is super efficient in the sense of Darling (1955) and then the covariance will

not need the first term in S(s) and corresponding terms in D; the

asymptotica are the same as if a were knon, that is, for Case 6. Tbus

S(s) - (52(s), 93(s)) and D is am in (18) but with the top row and first

colum removed.

For other cases, Pk(#,C) for Case k is calculated using only those

coponents in g1(s) mwhch correspond to unknown 9 ' with the correspodiang

entries in D, before this is inverted to give the Z used in (16). Tbe

Cramdr-von Mines statistic V2  is based directly en the process y(z), while
A2  is based on the process a(z) - y(z)/(z(l-z))Ua; Samtotically V2 and

A2 are given by

V2 1-Y2 (,z)d and A-1 .2(.,d.

0 0

The asymptotic distributions of both statistics are a u of weighted

2
independent X, variables; the weights must be found from the elgenvalues of

an integral equation with, for ,"2, the Pk(s,t) for case k, as kernel.

For A2  one must find the 9k(s t) of the a(z) process. One the

weights are known, the percentage points of the distributions can be

"•ca•duated by Itof' a method. The techniques are straightforward once the

Pk(s,t) are knmo, and we omit the details: they are given in Lockhart and

18



Sterbeun (1989).

5. lNlTin 31az

5.1 Asymptotic distributions and Monte Carlo studies The results of SmLth

(1985) can be used to establish rigorously that V2 has the asumptotic

distributions calculated as above, for any estimator found by a method of

estimation having the properties of Theorem 3 of Smith. In an unpublished

note the present authors have damonstrated the existence of such an estimator

by establishing that it is possible to select the Ocorrect" local maximm of

the likelihood in the event that there are several. However, we emphasize

that MR bUM Q•k j ata MR gjj bas fund in Which two such local

mazLma exist. WJe should also note here that, for A, we are unable to give a

rigorous derivation for the asymptotic distribution; this problem arises

whenever paramaters are estimated in goodness-of-fit tests of the Andarson-

Darling type. The asymptotic distribution is, however, conflzmed by extensive

Monte Carlo studies. These Monte Carlo studios were undertaken to confirm

various features of the above estimation and testing procedures. Typically,

they involved 10000 asmples of sizes n - 10, 20, 30, 40, 60, 100, and 200. mad

with values of a frou 0.1 to 10. The studies firstly confirmed the

conjecture, proposed by other authors also, that plots of m9 and l0 will

not cross more than twice, so that a local azimm of the likelihood occurs,

if at all, only once. This is clearly Important In knowing what to search for

when the parameters are to be estimated. The studies also confirmed the

success of Procedure A in providing estimates to give a better fit, noted

earlier.

5.2. Frequency of Migures la lb and Uc. These studies also revealed how the

relative frequency of Figures la, lb and lc will depend on n and on a. As

n grows larger, Figure le becomes less and less likely and as a becomes

............ ...... .....



smallor, for fixed n, the relative frequency changes from Figure I& towards

Figure lb. These results are illustrated in Table 4.

The results of SmLth (1985) guarantee that Figure le arises only with

probability tending to 0 as n tends to infinity for any fixed finite value

of a in (1). If the data are sampled from the two parmter extrm value

distribution, however, (that is, (1) with a + a) Figure le may be expected to

arise about half the time. This can be explained as follows. The sampling

can be regarded as from the family (2), with c - 0, and samples will give

sometimes ; > 0 (Figure la), and sometimes ; < 0 (Figure lc). This problem

of unobtainable estimates within the desired family also arises in testing for

the von Nixes distribution on the circle with known direction of

concentration. In Lockhart and Stephens (1985) it was suggested that there

too an expansion of the model could overcome this problem. Similarly here,

testing for the Generalized Extrime Value distribution (2) rather than the 3

parameter Weibull distribution (1) will eliminate the awkwardness. Tests for

the enlarged model (2) will be presented in a future paper.

5.3 Conavergence of dLstrLbutions of EDY statistics For finite a, the Monte

Carlo studies show that the distributions of 9 2 , U2 and A2 converge rapidly

to the asymptotic. This is similar to the behaviour of these statistics in

other test situations and tables will not be given. The asymptotic points in

Table 1 can be used with good accuracy for n z 10.

EDF statistics are known to provide powerful tests for many

distributions; the powers naturally depend on the alternatives considered,

and a study is being made on power properties for the various alternatives to

the Weibull usually encountered. On the whole, with the limited power

results at present available, the statistic A2 above is suggested as the

preferred statistic for overall Veibull testing.
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APIINDIX 1: DATA SITS

Set 1. Number of cycles to failure of grinis (in units of 1000 cycles)

225 171 198 189 189 135 162 135 117 162

Set 2. Times to failure of airconditionLng equipment for an aircraft.

74 57 48 29 502 12 70 21 29 386 59 27 153 26 326

Set 3. Artificial data.

0.273 0.468 0.504 0.535 0.617 0.804 0.932 1.034 1.289 1.293

1.294 1.376 1.399 1.407 1.422 1.497 1.521 1.542 1.685 1.737
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APPKEDU 2

(a) Asymptotes for N and =10 (Section 2.5)

Suppose, as a 4 - a, the relation a - 7a + b0 + b1 /e, where y, b0

and bI and b are to be deteruined below for each of a9  and alO.

Then we have

(W . ({ ( + + + + (Al)

2.b~1  3 2-7. {7x,/2+ + bo, -x/ + boz1 /2 + blzel 11
a + 2

- zXp(-Z), say, - 7"1 [1 - MZ) + (Z2/2)]

7x 7/2 bz -(13 20 2 4 22

7z2/2 + box, + + be, + + w-+ b+7zj
. +'2 -+ 2 +

r -Xr, !

Hence se:1tting T- • , wheres iI sLrfor •I fr 1Out

n, we get

n A 2

0 + - where1-1 a

A2 -- [7T2/2 + boT1l and

2 2B - (77 3 /3 + b0T2/2 + b1T1 ) + 7 24/8 + b0 yT3/2 + b2 T2 /2
Z(. 0/)-1 A3 B/2

Also C2  E(l-/a)O +- + , where

A3 - - [172 /2 + (b 0 -1)T 1 ] and

13 - (7 T3 /3+(bo-1) T2 /2 + bT 1 ) + 72T4 /8 + (b 0 -1)7 3/2 + (b20 -2bo+1)T 2/2



V. now use the above results in equation (10). This may be written

Z(I -*x /0) -1 m Z(1 - z/0)l

Carrying three terms in each expression, we have

+W_- (+ i + + [.(0 +- -B+ +e , + + + +

2
where i Z n and s - Mrj/n.The coefficients of the constant term give

7iT0 + (b0-1)T0 + 7yA2 - 73+ b0T0; then 7(T 0 + A2 - A3) - To. but

A2 - A3 -- 1, 1 sowehave for .,

i - 71/o) (A2)

Next, equating coefficients of 1/a, we have

75 o0 + 7 i A2 + 7B2 + (bO-1)'oT + (bo-1)A2 + b1 0o 7 B3 + b0A3 + b1o;

then 71 70 +iA 2 +B 2 - 3 oio+A .A) io-A (A3)

Here

B7 o3 T2 b 7 2T " b0 7T37 b 027
B2 " r + 2 + b171u" + -8- + -2 + = and

3_- (b0 "1)T2  ) 274 (b0o1)-T (b - 2b0 +1)7 2
B3 w . + 2 + -- 2 bT++ 2

"thus

B2 " B 3 -" + b0T 2 - T 2 . Recall also that A2 - A3 7-T1; then,

substitution in (A3) gives

2
b0 (,T 0 + -y 72 - T) + J- (73 " T + 7(a 0 - 72 /2)

" •o " 0 (M)



Solution of (A2) for Y, and (04) for bo, nov called 5 O, given the

coefficients in the asymptote ml0 - 7a + 610, given in Section 2.5.

We nou consider equation (9), which may be written

-~ x 1 /a), + log(l-x i/0)(l - z/e), (-n E log(l-x1/a))E(1-z /a)}

Expndigwe have

2~ 7~z (7 2 z/ 2 + box,)lB(To + (7a + o)- M ý' + o"x 1 1 +• 2

+ +
+O+ ; then

T1 T2 /2 yT 3 /2 + b A T & z T O u /+A 2 ')
(T ÷ " (7a ÷ b) - ÷2 +

(70+a a J

"M-Y(T0 "-T1 ) + {b0 (xT0 "Ti) + iv[*T/2 + A2x + (7T3 -T 2 )/2 + b0T2 I}/a•

Equating the constant term gives To - f(iT 0o-T1 ), the same as for equation

10. Thus the asymptotes for N and sl0 will be parallel. Further, the

coefficient of 1/a gives

A2-bo(i•o -TI) + -y -yT0- VA ÷ 2; + ÷ 2 ÷3+-g-T0 - -7 T 7 b0'2

more algebra gives

b0(iT0 + 'YT2 - -YT1 ) + Y . + -0 (A)

Solution of (AS) for b0  gives the constant 6. in the asymptote

a9 - yea + 5. quoted in Section 2.5.

Difference A Finally, we have A - 610 - 69 given by

(610-69) o 0+ 772 " 2\) - io - 7(,o"T2 )/2

as in equation (14) of Section 2.5.



APPENDIX 3

In Section 3.1 it was pointed out that the means of the asymptotic

distributions of W2  and U2 can be found analytically. For completeness,

we list below six integrals which arise in these calculations.

1

I1 i(1's) 2 (ll(')2(n'4)/m ds - 1(-/)332n

12 - f (l-s)2tlog(l-s))2ds - 2/27

0
1

13 - J (1-s)2(log(1-s))2[log(l-og(1-s))]2 ds

0

- 2(w 2/6 + f 2. 37 + 2 + (27-3)log 3 + log 23)/27

- 0.105618
1

14 f J (1-s) 2 l'log(l.s))2"l/a ds - r(b)/3b

0

1

15 f J (1-s) 2 (_log(1.s))2-1/a logI-log(l-s))ds

0

- (r'(b) - lo3 r(b))/3b

where, in 14 and 159 b - 3-1/m;

1

16 f f (l-s) 2 (log((ls)) 2 log(-log(l-s))ds

0

- (r'(3) - 2 log3)/27

- (3 - 27 - 2 los3)/27- - 0.01302
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TABLE "

CRITICAL POINTS FOR WEIBDLL CASE I FOR A**2
-- - -- - - -- - -- - - -- - -- - - ----

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995
-- - - -- - - - --- --- ---- - - - - - - - - - - -

0.0 10.496 0.735 0.915 1.061 1.321 1.590 1.958 2.243
0.05 0.484 0.713 0.882 1.019 1.260 1.510 1.851 2.115
0.10 0.474 0.693 0.853 0.982 1.208 1.440 1.756 2.001
0.15 0.467 0.677 0.830 0.953 1.166 1.385 1.680 1.909
0.20 0.464 0.670 0.818 0.936 1.141 1.350 1.631 1.847
0.25 0.468 0.674 0.821 0.938 1.139 1.343 1.615 1.825
0.30 0.485 0.696 0.847 0.966 1.171 1.377 1.651 1.860
0.35 0.517 0.747 0.910 1.039 1.259 1.480 1.774 1.997
0.40 0.572 0.840 1.032 1.185 1.448 1.713 2.068 2.340
0.45 0.654 0.995 1.249 1.455 1.816 2.189 2.694 3.086
0.50 0.774 1.248 1.621 1.933 2.492 3.077 3.878 4.383

CRITICAL POINTS FOR WE DULL CASE 3 FOR A**2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995

0.0 '0.342 0.472 0.563 0.635 0.757 0.879 1.043 1.167
0.05 0.345 0.476 0.568 0.640 0.763 0.886 1.051 1.176
0.10 0.349 0.482 0.575 0.648 0.773 0.898 1.065 1.193
0.15 0.354 0.491 0.586 0.661 0.789 0.917 1.088 1.219
0.20 0.368 0.503 0.602 0.679 0.812 0.945 1.122 1.258
0.25 0.374 0.520 0.624 0.705 0.844 0.984 1.171 1.314
0.30 0.388. 0.544 0.654 00.740 0.889 1.039 1.240 1.394
0.35 0.407 0.574 .0.694 0.788 0.951 1.116 1.338 1.509
0.40 0.430 0.614 0.747 0.853 1.037 1.224 1.478 1.673
0.45 0.459 0.667 0.819 0.941 1.156 1.376 1.675 1.909
0.50 0.496 0.735 0.915 1.061 1.321 1.590 1.958 2.243
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CRITICAL POINTS FOR WEIBULL CASE 5 FOR A**2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995

--- r ----------------------- -----------.--------
0.0 0.342 0.472 0.563 0.635 0.757 0.879 1.043 1.167
0.05 0.343 0.473 0.564 0.636 0.758 0.881 1.045 1.170
0.10 0.344 0.476 0.567 0.640 0.763 0.887 1.052 1.178
0.15 0.348 0.480 0.574 0.647 0.772 0.898 1.067 1.195
0.20 0.353 0.489 0.585 0.660 0.789 0.919 1.092 1.225
0.25 0.363 0.505 0.604 0.688 0.818 0.955 1.138 1.278
0.30 0.381 0.532 0.640 0.725 0.872 1.021 1.222 1.377
0.35 0.411 0.583 0.706 0.805 0.977 1.154 1.394 1.580
0.40 0.460 0.673 0.832 0.962 1.192 1.432 1.762 2.017
0.45 0.535 0.828 1.061 1.257 1.611 1.982 2.490 2.883
0.50 0.634 1.059 1.418 1.724 2.276 2.853 3.639 4.247

CRITICAL POINTS FOR WEIBULL CASE 7 FOR A*e2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995

0.0 0.292 0.395 0.467 0.522. 0.617 0.711 0.836 0.931
o.os 0.295 0.399 0.471 0.527 0.623 0.719 0.845 0.941
0.10 0.298 0.403 0.476 0.534 0.631 0.728 0.856 0.954
0.15 0.301 0.408 0.483 0.541 0.640 0.738 0.869 0.969
0.20 0.305 0.414 0.490 0.549 0.650 0.751 0.885 0.986
0.25 0.309 0.421 0.498 0.559 0.662 0.765 0.902 1.007
0.30 0.314 0.429 0.508 0.570 0.676 0.782 0.923 1.030
0.35-l 0.320 0.438 0.519 0.583 0.692 0.802 0.947 1.057
0.40 0.327 0.448 0.532 0.598 0.711 0.824 0.974 1.089
0.45 0.334 0.469 0.547 0.615 0.732 0.850 1.006 1.125
0.50 0.342 0.472 0.563 0.636 0.757 0.879 1.043 1.167

I2
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TABLE 2

CRITICAL POINTS FOR WEIBULL CASE I FOR W**2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995
~~ ---- -------- ------ -- -- ----

0.0 0.074 0.116 0.148 0.174 0.222 0.271 0.338 0.390
0.05 0.071 0.111 0.140 0.164 0.207 0.251 0.312 0.358
0.10 0.069 0.106 0.134 0.156 0.195 0.235 0.289 0.332
0.15 0.068 0.103 0.129 0.149 0.186 0.222 0.272 0.310
0.20 0.067 0.101 0.126 00146 0.180 0.215 0.261 0.296
0.25 0.068 0.102 0.127 0.147 0.180 0.214 0.259 0.293
0.30 0.071 0.107 0.133 0.154 0.189 0.224 0.271 0.306
0.35 0.077 0.117 0.147 0.171 0.211 0.252 0.306 0.347
0.40 0.086 0.136 0.172 0.202 0.254 0.308 0.381 0.436
0.45 0.100 0.164 0.215 0.257 0.332 0.410 0.518 0.601
0.50 0.119 0.209 0.284 0.347 0.461 0.581 0.744 0.869

CRITICAL POINTS FOR WEIBULL CASE 3 FOR W**2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995

0.0 0.050 0.073 0.089 0.102 0.124 0.146 0.175 0.197
0.05 0.051 0.074 0.091 0.104 0.126 0.149 0.179 0.202
0.10 0.052 0.076 0.093 0.107 0.130 0.153 0.184 0.208
0.15 0.054 0.078 0.096 0.110 0.134 0.159 0.191 0.216
0.20 0.055 0.081 0.100 0.115 0.140 0.166 0.201 0.227
0.25 0.057 0.085 0.105 0.121 0.148 0.176 0.213 0.241
0.30 0.060 0.089 0.110 0.128 0.157 0.187 0.228 0.260
0.35 1.063 0.094 0.117 0.136 0.169 0.202 0.248 0.283.
0.40 0,566 0.100 0.126 0.147 -0.183 0.221 0.272 0.311
0.45 5.070 0.107 0.136 0.159 0.200 0.243 0.301 0.346
0.50 0.074 0.116 0.148 0.174 0.222 0.271 0.338 0.390
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CRITICAL POINTS FOR WEIBULL CASE 5 FOR W**2

C O.SO0 0.7SO 0.850 0.900 0.950 0.975 0.990 0.995
-------------------- n---- -----------------------

0.0 0.050 0.073 0.089 0.102 0.124 0.146 0.175 0.197
0.05 0.050 0.073 0.089 0.102 0.124 0.146 0.176 0.198.
0.10 0.051 0.074 0.090 0.103 0.126 0.148 0.178 0.200
0.15 0.052 0.075 0.092 0.105 0.128 0.151 0.182 0.206
0.20 0.053 0.078 0.095 0.109 0.133 0.157 0.189 0.214
0.25 0.055 0.081 0.10)0 0.115 0.141 0.167 0.202 0.229
0.30 0.059 0.088 0.109 0.126 0.155 0.185 0.226 0.257
0.35 0.065 0.098 0.124 0.144 0.180 0.218 0.270 0.310
0.40 0.073 0.116 0.150 0.178 0.228 0.281 0.353 0.409
0.45 0.086 0.145 0.194 0.236 0.311 0.390 0.498 0.581
0.50 0.102 0.186 0.258 0.320 0.431 0.547 0.706 0.827

CRITICAL POINTS FOR WEID ULL CASE 7 FOR W**2

C 0.500 0.750 0.850' 0.900 0.950 0.975 0.990. 0.995

3.0 0.044 0.062 0.075 0.085 0.103 0.120 0.144 0.162
3.05 0.044 0.063 0.076 0.086 0.104 0.122 0.145 0.163
0.10 0.044 0.063 0.077 0.087 0.105 0.123 0.147 0.165
0.15 0.045 0.064 0.077 0.088 0.106 0.1-25 0.149 0.168
0.20 0.045 0.065 0.079 0.089 0.108 0.127 0.152 0.170
0.25 0.046 0.066 0.080 0.091 0.110 0.129 0.154 0.174

* 0.30 0.047 0.067 0.081 0.093 0.112 0.132 0.157 0.177
0.35 0.047 0.068 0.083 0.094 0.114 0.134 0.161 0.181
0.40 0.048 0.069 0.085 0.097 0.117 0.138 0.165 0.186

* 0.45 0.049 0.071 0.087 0.099 0.120 0.141 0.170 0.191
0.50 0.050 0.073 0.089 0.102 0.124 0.146 0.175 0.197
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TABLE 3

CRITICAL POINTS FOR WUIBULL CASE I FOR U**2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995
-------f------------ - - - - - - -- - - - -

0.0 0.060 0.090 0.111 0.129 0.159 0.189 0.230 0.261
0.05 0.060 0.090 0.111 0.129 0.159 0.189 0.230 0.261
0.10 0.060 0.090 0.112 0.129 0.159 0.189 0.230 0.262
0.15 0.060 0.090 0.112 0.130 0.160 0.190 0.231 0.262
0.20 0.061 0.091 0.113 0.131 0.161 0.191 0.232 0.264
0.25 0.062 0.092 0.114 0.132 0.163 0.193 0.235 0.266
0.30 0.063 0.094 0.116 0.134 0.165 0.196 0.238 0.270
0.35 0.064 0.096 0.119 0.138 0.169 0.201 0.243 0.276
0.40 0.066 0.100 0.124 0.143 0.176 0.209 0.253 0.286
0.45 0.069 0.105 0.131 0.152 0.187 0.222 0.268 0.304
0.50 0.069 0.105 0.131 0.152 0.187 0.222 0.268 0.304

CRITICAL POINTS FOR IUEIDULL CASE 3 FOR U**2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995

0.0 0.048 0.070 0.085 .0.097 0.118 0.139 0.167 0.187
0.05 0.049 0.071 0.086 0.098 0.119 0.140 0.168 0.189
0.10 0.049 0.071 0.087 0.100 0.121 0.142 0.170 0.192
0.15 0.050 0.073 0.089 0.101 0.123 0.145 0.174 0.195
0.20 0.051 0.074 0.091 0.104 0;126 0.148 0.178 0.200
0.25 0.052 0.076 0.093 0.107 0.130 0.153 0.184 0.207
0.30 0.054 0.079 0.096 0.111 0.1.35 0.159 0.191 0.215
0.35 0.055 0.082 0.100 0.115 0.141 0.167 0.201 0.227
0.40 0.058 0.085 0.105 0.121 0.149 0.176 0.214 0.242
0.45 0.060 0.090 0.11 0.129 0.159 0.189 0.230 0.261
0.50 0.060 0.090 0.111 0.129 0.159 0.189 0.230 0.261
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CRITICAL POINTS FOR WEIBULL CASE 5 FOR U**2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995
--------------------------------------------------

0.0 0.048 0.070 0.085 0.097 0.118 0.138 0.166 0.187
0.05 0.048 0.070 0.085 0.097 0.118 0.139 0.167 0.188
0.10 0.049 0.070 0.086 0.098 0.119 0.140 0.168 0.189
0.15 0.049 0.071 0.087 0.099 0.121 0.142 0.170 0.192
0.20 0.050 0.072 0.088 0.101 0.123 0.145 0.174 0.196
0.25 0.051 0.074 0.090 0.103 0.126 0.148 0.178 0.201
0.30 0.052 0.076 0.093 0.106 0.130 0.153 0.185 0.209
0.35 0.053 0.078 0.096 0.110 0.135 0.160 0.194 0.220
0.40 0.055 0.082 0.101 0.116 0.143 0.170 0.207 0.235
0.45 0.057 0.085 0.106 0.123 0.152 0.181 0.222 0.253
0.50 0.057 0.085 0.106 0.123 0.152 0.181 0.222. 0.253

CRITICAL POINTS FOR VEINDULL CASE 7 FOR U**2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 *0.995

0.0 0.043 0.061 0.074 0.084 0.102 0.119 -0.143 0.160
0.05 0.043 0.062 0.075 0.085 0.103 0.121 0.144 0.162
0.10 0.044 0.062 0.076 0.086 0.104 0.122 0.146 0.164
0.15 0.044 0.063 0.077 0.087 0.105 0.123 0.148 0.166
0.20 0.045 0.064 0.077 0.086 0.107 0.125 0.150 0.168
0.25 0.045 0.065 0.078 0.089 0.108 0.127 0.152 0.171
0.30 0.046 0.065 0.080 0.091 0.110 0.129 0.154 0.173

* 0.35 0.046 0.066 0.081 0.092 0.111 0.131 0.157 0.176
0.40 0.047 0.067 0.082 0.094 0.113 0.133 0.159 0.180.
0.45 0.048 0.068 0.083 0.095 0.115 0.136 0.162 0.183
0.50 0.048 0.070 0.085 0.097 0.118 0.138 0.166 0.187
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TA.BL 4

RILIATZ flZQUN OF FIOUU U, lb and I@.

The table gives the percentage of 10000 Monte Carlo samples givizng the
different Figures, for different sample *aoss n and different values of
c - 1/u.

c I 0-20 Figure la Figure lb Figure lc

.1 72.2 0.5 27.3
.25 91.0 1.5 7.5
.5 69.5 9.9 0.6
.67 69.6 30.3 0.1
.83 36.6 61.4 0

1.00 15.0 65.0 0
1.25 2.8 97.1 0
2.00 0 100

c a U-40

.1 81.5 0.0 18.5
.25 98.6 0.0 1.4
.5 99.5 0.5 0
.67 94.4 5.6 0
.83 61.7 38.3 0

1.00 18.7 61.3 0
1.25 1.1 98.9 0
2.00 0 100.0 0

.1 87.0 0 13.0
.25 100.0 0 0
.5 99.0 1.0 0
.67 90.8 9.2 0
.83 70.4 29.6 0

1.00 18.4 81.6 0
1.25 0 100.0 0

c In- 100

.1 93.1 0 6.9
.25 100.0 0 0
.50 100.0 0 0
.67 100.0 0 0
.83 91.6 8.4 0

1.00 23.9 76.1 0
1.25 0.1 99.9 0
2.00

34



Pk*t of Wog -f MsW~d Uer data W I (Cmi uwW Oakm)

IA
Po I

PkU d 103 117AWWfrda 02(Pet

Trial Alpha ag

IO I

Trial Alpha cv 3



Figure 2&
nnd m 1 for daL& 1 (Cox and Oakes)

Si

I -- " " ,, I"

79 as Ws 110 117

Trial Alpha at
Figure 2b

mtg and .ino for da& set 2 (Prowl=)

16 1

Trial Alpha at

Figure 2c
mg and mo for eed data set 3 (n =20)

* i

F-= " " I
-1.0 ;. ..4 -A 02 0.O U &72

36



:gCaiM"I CLASU8WgATue OCUw9 ?ts M%.. VSSW m

REPORT COCURENTATION PAGE I~ ~

476 T UM E 1,6 GOVT ACCUSIGN " 1 . X9C 3MI*SCAT&LOO, S

4.TIThE fIuhm w S. Typt OF mEP@6T a Palo" Cavan"1

Estimation and Tests of Fit for the Technical

Three Parameter Weibull Distribution a.__________One._nape" ______

7.AuaOV. *"f a. CONTRACT- GN RAWINTIMB

R.A. Lockhart and Michael Stephens N0021-92-J-1264

3. ER0601610 @R6N4AM&13M NAam AND £00388 M PRC6*AmgigmnvM. 0051117.TA
Devarument of Statiztics AMEA6 WORK VTao Uuu.RSO

Stanford Uuiversit- n-4267
Stanford, CA 94305-4065 I~ -Z.6

%. CON?*O6306N OFFIC9 NAME ls "Oma £003385AT

^offica of Naval Fasearch October 27, 1993

4. 601 amngAGENCY A44L £033 AGNwoo AVkn 1 m 60weem owdel I& a- RS CLASS. 1088

14. aKSTRIBaTION SlAYKMET fed&U feta".M~

- - k9proved for public releases; distribution unli"'ted.

17. OtSTR~gUTI@N STATSUSHT fat Me assow swmw in AM aSa 0s 09WO * Ma -Asw

IS. SuPfteAMUMTARY IS@T9 THE VIrwI. OPINIONS. AN'OIO P1!4DVM0 CONTAIXUD iN THIS MEORT
ARE THOSE OF THE AUTHOR(S) AND 81401 V10T 9! CONSMhED AS
AN OFFCIAL DEPARTMENT OF THE ~RM POSo:-..* POLCY. CR Di&
0330W UN4LESS S0 DESIGNATED SY OTHER OOCUUJNTATION.

!1. Kc aU WORDS (Commm - mea'n&0e asi 0686W oam sam od r e Om ew~s

ODF tests: empirical distribution function: goodneassof-fit:

reliability: survival analysis.

SL. ASSTNACT (CauiOM OR eiWOam 00t V.... 000800 op #dM is uFNO in

Sea Reverse Side

AS$ S/ 3473e4-44 -tuOI6 8 3~T .NCLASST.!',



Estimation techniques are given for the three-parameter Woibull

distribution, with the location (or origin) parmeter umknown, and possibly

also the shape and/or scale parameters unknown. Tests of fit are described,

and tables are given for the EDF statistics A2 W2 and U2 , to make the tosts.

Several examples are discussed.


